Keplers_Law:
#Importing our libraries:
import numpy as np
import matplotlib.pyplot as plt
#Making a list of planet names and arrays of our data:
planet_name = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn"]
orbital_period = np.array([87.77, 224.70, 365.25, 686.95, 4332.62, 10759.2])
semimajor_axis = np.array([58e6, 108e6, 149e6, 228e6, 778e6, 1427e6])
#Plotting our data as is:
plt.scatter(orbital_period, semimajor_axis)
plt.plot(orbital_period, semimajor_axis)
#Convert orbital period units from days to years & semimajor axis units from km to AU (astronomical units)
#p_years = orbital_period / 365.25
#print(p_years)
#a_AU = semimajor_axis / 149e6
#print(a_AU)
#Plotting Kepler's 3rd Law:
#p_squared = p_years**2
#a_cubed = a_AU**3
#plt.scatter(p_squared, a_cubed)
#plt.plot(p_squared, a_cubed)
#Rescaling our plot axes to logarithmic:
#plt.xscale("log")
#plt.yscale("log")
#Titling our plot and labeling our axes:
#plt.title("Kepler's 3rd Law")
#plt.xlabel("Orbital Period squared (year^2)")
#plt.ylabel("Semi-Major Axis cubed (AU^3)")
#Annotating our data points:
#for i in range(len(p_squared)):
# plt.annotate(planet_name[i], (p_squared[i], a_cubed[i]))
plt.show()